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ABSTRACT

The rational use of optimality criteria is investigated for a class of

structural synthesis problems where materials, configuration and applied

load conditions are specified, and the minimum weight design is to be deter-

mined. This study seeks to explore the potential of hybrid methods of

structural optimization for dealing with relatively large design problems

involving practical complexity. The reduced basis concept in design space

is used to decrease the number of generalized design variables dealt with

by the mathematical programming algorithm. Optimality criteria methods

for obtaining design vectors associated with displacement, system buckling

and natural frequency constraints are presented. A stress ratio method is

used to generate a basis design vector representing the stress constraints.

The finite element displacement method is used as the basic structural

analysis tool.

The optimality criteria are first derived for a general case and then

modified for each type of behavior constraint. From these optimality

criteria, recursive redesign relations are obtained for multiple constraints

of the same behavioral type. In order to achieve high efficiency, design

variable linking and temporary deletion of noncritical constraints are

employed. The need for actual structural analyses is reduced by using

first order Taylor series expansions to explicitly approximate the depend-

ence of stresses and displacements on reciprocal design variables. Com-

puter programs are written implementing some of the methods developed.
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Results for several examples of truss systems subject to stress, dis-

placement and minimum size constraints are presented. An assessment of

these results indicates the effectiveness of the hybrid method developed.
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CHAPTER I

INTRODUCTION

During the past fifteen years, considerable pro-

gress has been made in the area of automated optimum

design of structural systems. Optimum structural de-

sign methods have been studied intensively and signi-

ficant contributions have been made by many investiga-

tors. These research studies can be usefully classified

into three main categories as follows:

(1) Application of mathematical programming algorithms;

(2) Application of recursive redesign formulas based on

fully stressed design methods and/or discretized

optimality criteria concepts;

(3) Mixed or hybrid optimization methods.

In the first category, structural design problems are

stated as inequality constrained minimization problems

and solved numerically using mathematical programming

techniques such as linear, nonlinear and dynamic program-

ming. The most attractive feature of this approach is

its generality in the sense that a broad class of struc-

tural optimization problems can, in principle, be treated

in a unified manner. This approach, pioneered by Schmit[l],

has actually enjoyed considerable success in a wide

range of practical design.problems [2,3,4 and 5]. How-

ever, by about 1970 it became apparent that the applica-
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tion of this method, in combination with finite element

structural analysis, to large scale structural optimiza-

tion problems required inordinately large numbers of

analyses and long run times to solve problems of

only modest proportions [6,7].

This situation led some investigators to abandon

the mathematical programming approach and direct renewed

effort toward implementing recursive redesign procedures

based on fully stressed design concepts and discretized

optimality criteria. One of the first research efforts

to focus attention on the discretized optimality criteria

approach was reported by Venkaya, Khot and Reddy in Ref.

[8]. This early effort has in recent years been followed

by several notable studies [9,10,11 and 12] which pursue

this same basic line of investigation. These studies

have shown that the optimality criteria approach, includ-

ing fully stressed design concepts, is well suited to

achieving high efficiency in appropriate specialized sit-

uations where only one type of behavior constraint dom-

inates the optimum design. Indeed, during the past few

years a widely held viewpoint has been that while mathe-

matical programming methods are well suited to compo-

nent design optimization, they are not practical for

dealing with large structural systems. This assessment

of the state of the art is well illustrated by the mixed

2



optimization method for automated design of fuselage struc-

tures reported in Ref. [13]. In this work a fully stressed

approach is used to obtain a gross overall distribution

of material while the detailed design of rings and stif-

fened panels is carried out using a mathematical program-

ming technique.

Nevertheless, other investigators, still attracted

to the mathematical programming approach by its gen-

erality, focused their efforts on a quest for the ef-

ficiency improvements within the structural synthesis

context [14]. With the same goal in mind, another

type of mixed optimization technique was presented by

Pickett. The reduced basis concept in design space

and its initial exploration was reported in Refs. [15]

and[16]. This work provides the foundation for a new

group of mixed optimization techniques that will be

called hybrid methods of structural optimization. Using

the reduced basis concept it is often possible to dras-

tically reduce the number of independent generalized

design variables needed to obtain a good upper bound

approximation of the optimum design. This is of cru-

cial importance since the computational effort required

to solve a mathematical programming problem grows rapidly

as the number of design variables increases. It now

3



appears that the reduced basis concept in design space

is one of the most promising approximation concepts in

structural synthesis, although there are many open ques-

tions that will require further study from both a theore-

tical and a practical point of view.

The study reported here may be classified as a

mixed optiiiiization method. The objective of this inves-

tigation is to explore the potential of hybrid methods

of structural optimization using basis design vectors

generated by optimality criteria and stress ratio methods.

Primary attention is focused on the methods to be used

in generating the basis design vectors. As previously

mentioned, optimality criteria methods are well suited

to the problem if only one type of behavior constraint

is involved. It follows that the optimality criteria

approach can ideally be used to generate basis design

vectors if they are generated for each type of behavior

constraint separately. Therefore, the optimality criteria

approach is employed in this study as a tool for generating

basis design vectors. Consequently, primary effort is

concentrated on the derivation of discretized optimality

criteria and the development of rational redesign proce-

dures based on them. Although the basic statements of

discretized optimality criteria are quoted from pub-

lished descriptions [9-12], this work attempts to estab-

4



lish a general viewpoint with respect to optimality cri-

teria and their rational usage.
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CHAPTER II

PROBLEM FORMULATION

AND

SOLUTION METHOD

2.1 Formulation of Problem

Structural synthesis problems are considered for

a structure which is modeled as an assemblage of a

number of discrete finite elements. It is assumed that

the types of elements used to model the structure are

restricted to those which have the following special

properties:

(1) element stiffness is proportional to its mass;

(2) there is one representative measure of intensity

of stress state in each element.

Elements of this type include axial force elements,

shear panels, or constant strain triangles. The material

of each element and the configuration of the structure

are specified beforehand. All loads are applied

directly or work equivalently at the nodes of the

assemblage. The cross sectional area for an axial force

element, and the thickness for a shear panel or a con-

stant strain triangular membrane are taken as the design

variables, and the minimum weight design of the structure

is determined subject to both behavior and geometric

PRECEDTNG PAG NOT
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constraints. The former includes allowable tensile, com-

pressive or combined stress, upper and lower bounds on

joint displacement, lower bounds on general buckling

loads and natural frequencies, and the latter includes

minimum and maximum element sizes. Arbitrary design

variable linking is also taken into account.

Objective function

The total weight of the structure is taken as the

objective function to be minimized and it is given by

NH

W = ri- Ai (2.1)

where NM is the fixed total number of elements represent-

ing the structure, pi is the specified mass density of

the element i, Li is the given length for an axial force

element and the preassigned surface area for a shear

panel or constant strain triangle element i. The A.

denotes the single design variable sizing each element

i, namely the cross sectional area for axial force ele-

ments or the thickness for shear panel and constant

strain triangular elements.

Constraints

(1) Stress constraints

For an axial force element the stress constraints

are given by

S48(2.2)

8



where a ci and ati denote the allowable compressive and

tensile stresses for the element i, respectively, and

a.. represents the stress in member i under load condi-
13

tion j. For a planar element, shear panel or constant

strain triangle, the stress constraint is given by

o < i (2.3a)

where a j. is the combined stress in element i under
oiJ

load condition j, a si denotes the yield stress of the

material used in element i, and c is a safety factor

(c > 1). The combined stress is defined by

c3o = 3 - Y3 (2.3b)

where aox and ay are normal stresses in the x and y

directions, respectively, and Txy represents the inplane

shear stress referred to the x-y axes.

(2) Displacement constraints

Displacement constraints are defined by

LA (LAu (2.4)

where uLi j and Ui j are the lower and upper bounds on

the ith joint displacement under the jth load condition,

respectively, and uij is the ith joint displacement

under load condition j.

(3) Buckling constraints

Any loading system applied on the structure can

be expressed as

9



Fj odi ~(2.5)

where Fj represents the load vector for the jth loading

system, f. denotes the relative load vector in which

the element of largest absolute magnitude has the value

1 or -1, and a.3 is a given scaling factor. Let pij.

be a load vector corresponding to buckling of the struc-

ture in the ith buckling mode under the jth load condi-

tion. Then the buckling constraints associated with

the jth load condition are given by

C0( (2.6)

where c is a safety factor. At first glance, it may

appear that the design procedure need only consider a

single critical buckling mode. However, it has been

shown that the buckling mode corresponding to the lowest

load can shift from one mode to another during the

design procedure. Therefore it is appropriate to

include multiple buckling mode constraints for each

load condition.

(4) Natural frequency constraints

Natural frequency constraints are given by
WL () (0! (2.7)

where wi is the ith natural frequency of the structure,

and iL and WiU are specified lower and upper bounds

on the frequency, respectively.

10



(5) Size constraints

Simple side constraints on the design variables are

given by

A ;,,, A; A,,, (2.8)

where A. and A. are the minimum and maximum allow-imln imax

able element size for element i, respectively.

(6) Linking of element sizes

In actual design problems, any group of two or

more elements may be required to: (1) have the same

size, or (2) maintain fixed relative proportions through-

out the design process. In order to implement this prac-

tical feature, new design variables D. are introduced
3

such that

A = Cki D (2.9)

Equation (2.9) means that element size A. is controlled

by the jth design variable Dj, and its magnitude is

given by aijD j. It is to be understood that aij is

positive and that it is the linking coefficient between

A. and D..

From equations (2.2) through (2.7), it is apparent

that all the behavior constraints under consideration

can be expressed in the following general form

k = O (2.10)

For example, a tensile stress constraint is given by



0- o (2.11)

where k is an arbitrary subscript used to identify a

given constraint. Since the behavior constraints involve

structural response quantities such as Gi, uij, Pij

and Wi' it follows that the gk are functions of the

independent design variables, that is

S (D) > (2.12)

where D represents the vector of independent design

variables.

Formulation of a design problem

Finally the problem can be stated in the following

general form:

Minimize M
WI = > i;L;.A;

subject to
(2.13)

'IC 0 I, - i, z, , NC.

Aio. I A; _ A oa

A; { ; , 2,., M

where NC is the total number of behavior constraints,

and NDV is the number of independent design variable

Dj, which must be less than the number of elements NM.

12



2.2 Solution Method

As shown in the preceeding section, the structural

synthesis problem considered here can be expressed in

the following mathematical form:

Minimize = W (D)

subject to

S( o 1 . 2, ~C (2.14)

A ,, I A~ () 1 i I, 2, PIA

where D is a NDV dimensional design variable vector.

The optimization problem represented by equation

(2.14) can not be solved analytically, because for

most practical structures the behavior constraints

gk(D) cannot be expressed as explicit functions of the

design variables. Therefore mathematical programming

techniques are usually required to solve the problem.

However, as mentioned in Chapter I, mathematical

programming methods are not economically feasible for

large scale problems in which the number of design

variables exceeds one or two hundred. This is primarily

due to the high dimensionality of the design space.

Therefore, a simple and effective method to overcome

this difficulty is to directly reduce the number of

design variables. One of the promising methods for

achieving this was presented by Pickett in Ref. [15],

13



and the essential idea is now employed here.

Consider a set of basis design vectors D , = 1,2,...,n

with n < NDV or n << NDV and define a set of generalized

design variables 8 such that

6 9 D (2.15)

The optimization problem represented by equations (2.12) is

now reduced to an n dimensional optimization problem in

terms of the 0., k = 1,2,...,n.

Minimize W ( )

subject to

k k( ) & O, 8 = I, 2, --, NC (2.16)

As shown in Appendix B, the optimum design of the problem

(2.16) is not, in general, the same as that of the problem

(2.14) and it must be viewed as an approximation of the

actual optimum design.

To use the reduced dimensionality technique, a set

of basis design vectors must be determined at the outset.

They may be generated by a variety of methods. In this

study effort is directed toward generating basis design

vectors in the following way:

(1) Classify the behavior constraints into several groups

such as the stress group, the displacement group,

14



and so on. Then construct a set of subproblems, each

of which has the same objective function as the

original problem, while including only member size

constraints and some of the behavior constraints.

(2) Solve each subproblem by methods based on optimality

criteria concepts as discussed in Chapter III, then

take each subproblem solution as a basis design vector.

After determining a set of basis vectors, there are

several efficient mathematical programming methods that

can be employed to solve the problem as stated in (2.16).

In this investigation a program called CONMIN developed

by Vanderplaats [17], which is based on a modified feasi-

ble directions method, was used. The overall optimiza-

tion procedure employed herein is outlined in Fig. 1.

The optimality criterion approach can be useful

in its own right. However, these methods encounter

practical difficulties when the optimum design is

governed by more than one type of critical behavior

constraint. Therefore, it should be recognized that

optimality criteria methods may, in the future, be

employed primarily as a source of basis design vectors

for hybrid methods of structural optimization.

On the other hand, as will be shown in the following

chapter, problems involving size constraints and only

15



Minimize W(D)

Subject to Stress, Displacement,

General Buckling, Natural

Frequency and Size Constraints.

Minimize W(D) Subject to Size Constraints and

Stress Displacement General Natural,/

Constraints Constraints Buckling Frequency
Constraints Constraints

Stress Optimality
Ratio -----

Method Criteria

DI D2  D 3  D4

D = 1D1 + 2D2 + 3D 3 + 64D 4

Minimize W() Subject to

All Constraints.

Mathematical
e-----------

Programming

Final Design

Fig. 1 Block Diagram of Solution Method
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one type of behavior constraint can be treated effectively

using the optimality criterion approach. In fact, includ-

ing size constraints, in addition to a single type of

behavior constraint, sometimes improves the computational

efficiency. Furthermore, in those cases where a single

type of behavior constraint dominates the optimum design

of the complete problem, the appropriate basis design

vector, generated including size constraints, will

represent the actual optimum design exactly. Therefore,

it is expected that the quality of basis design vectors

may be improved if size constraints are included in

each subproblem which generates a basis design vector.

17



CHAPTER III

THEORY OF OPTIMALITY CRITERIA

The purpose of this chapter is to formulate the

optimality criteria principle and to develop the dis-

cretized recursive procedure which will be used primarily

to generate basis design vectors for each type of behavior

constraint. The objective is to minimize the total weight

of the structure, and all size constraints are simultan-

eously considered in each case.

In section 3.1 the basic optimality criteria concept

and the associated recursive procedure is presented in a

general manner. In the following secitons the same con-

cepts are applied to each of several single behavior

constraint types.

3.1 General Concepts

We will consider the following minimum weight design

problem

Minimize NM
ZL L; A4  (3.la)

subject to

A0 ,2, NC (3.1b)

A n A ,6 Ail., (3.lc)

A, = ja i = , 12,- , NDV (3.1d)

19 PRECEDING PAGE BLANK NOT FILM



Using equation (3.1d), a design variable transforma-

tion is carried out, leading to the problem statement

expressed in terms of the independent design variables

after linking, namely

Minimize NDV
W = _ D (3.2a)

subject to

(9 () ( 0, - i, -, NC (3.2b)

D M ION J> (3.2c)

where

Di Ak (3.2d)

Now the optimality criteria for the problem given by

equations (3.2a) through (3.2c) will be derived. Let

D be a feasible design, i.e.,

2 -6 ) ; 0 +Or CA k (3.3a)

Dj~ I D, L . Oy OJ (3.3b)

but not necessarily an optimal one. It is assumed that

gk is differentiable for all k and the following notation

is adopted

20



~ =(3.4)

Consider a small change of the design, given by 6D, then

the corresponding change of the weight is given by

N DV

- , .-i  D (3.5a)

and the change of gk is estimated by

MDV

- ~I ~h (3.5b)
j-1

It is possible to consider a number of small changes of

design D, but among them we will consider only changes

which do not violate any of the constraints. Such a

change is called an admissible one and is defined as

a change such that

NDV-pv

r~.i. +a e D ;. ,, D : i> ,, (3 .6)
D fov E Yr. i j I31j - (3.6)

6 J 0, -E { M A

The design 6 can be improved if there exists an admissible

change for which 6W is negative (see Fig. 2). On the

contrary, if the design is optimal, 6W must be nonnegative

for all admissible changes. Figures 3 through 5 illustrate

the typical cases of this situation schematically. Now

the optimality criteria for the three cases shown in these

21



DW

g< 0

6D

W = const.
g >0

2mi"

=0

0 D 1

-

lmin D

Fig. 2 Admissible Design Change reducing

Objective Function
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g< 0

vg

D

D2min

g= 0

W = const.

O Dlmin D1

Fig. 3 Optimum Design, Case 1
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g< 0

VW

D2min

9
W = const.

g>0

0 Dlmin

Fig. 4 Optimum Design, Case 2

.24



D2

VW

D2max

g>0 g= 0

0 Dlmin W = const. D1

Fig. 5 optimum Design, Case 3
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figures are derived.

First in Figure 3, the admissible direction in

which the increase of the weight will be minimum is

perpendicular to Vgl' that is

,, SDI, S = 0 (3.7)

Solving equation (3.7) for 6D1 and substituting into

equation (3.5a), yields

S =, (3.8)

In this case there is no restriction on 6D2, therefore

6W > 0 for all possible 6D2 is satisfied if and only

if the factor within the parentheses is equal to zero,

i.e.,

+40, 0 (3.9)

Let

-- = ,(3.10)

then from equations (3.9) and (3.10)

J A 7I,r = 0 (3.11a)

S0 
(3.11b)

where A > 0 because from Fig. 3 wl > 0 and g 1, < 0.

26



In Fig. 4, D2 = D2min, therefore 6D2 must be non-

negative. In this case 6W > 0 is satisfied when the

value in the parenthesis is not less than zero, i.e.,

- ,+ 4 0 (3.12)
1 , I

Using the same definition of X, see equation (3.10), it

follows that

40 2 + ?b 0 (3.13)

From Fig. 5 it can be shown in a similar manner that

6W > 0 is satisfied if

44'z + A 1,z2 i 0 (3.14)

From the above discussion, the optimality criteria for

these cases can be summarized as

0, -r iETJDl{ .,< .<-D,1

-, i + Zk i wO, o" i (3.15a)

< o, 0,. if oJr,,

and

h 0 (3.15b)

For a general case, the optimality criteria can be derived

on the same basis, that is,

NDV

S\r /c2D 0 (3.16a)

for all 6D. such that

27



t4DV

Di Z. D, i J '" I (3. 6b)

According to Farkas' lemma, a set of equations (3.16a,b)

can be shown to be mathematically equivalent to the

following (see Appendix A),

a. o, -o* r I*Jm.

where (3.17)

S O, +or k Kact

Any design which does not satisfy (3.17) is not an

optimum design because from (3.16a,b), there exists

at least one admissible change of the design for which

6W < 0. In this sense the set of conditions stipulated by

equation (3.17) is called the optimality criterion.

A redesign equation can be obtained from the opti-

mality criterion in various alternative ways [9], [10]

28



and [12], but all these methods are based on the follow-

ing central idea. The optimality criterion given by

(3.17) can be rewritten as

NC
Z-.a )'W (3.18)

Equation (3.18) suggests that if I. < 1 and D. > D. for
j 3 jmin

a current design, D. must decrease to obtain an improved
3

design at the next iteration, and conversely if I. > 1

and D. < Dj. , then D. must increase. On this basis, a
3 ]max 3,

redesign rule is expressed as a function of Ij. In

this research effort the following plausible redesign rule

is used

= I ): ( D )s, for (I) O
( ) , I)(3.19)

where ( )s represents the s-th cycle in the iterative

design process. In order to include the size constraints,

the following relation must be appended to (3.19)

DSD-, < DS,< -a"

i m,, (, Dim#" (3.20)

j M AA Ds Z w2
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The reason for using the square root of I. in equation

(3.19) will be discussed in subsequent sections dealing

with specific constraint types. From the foregoing dis-

cussion it is obvious that if (Dj) s+= (D.j) for all j,
J s+ J i s

design () s satisfies the optimality criterion, and conse-

quently it may be an optimal design. If (D.j)s+l (D.)s

for some j, the design can be improved further, and re-

peated application of the redesign equation will converge

toward a design satisfying the optimality criterion.

The value of multipliers Xk can also be obtained

from the optimality criterion. From the first equation

in (3.18)

NC
i + jbv r 

J  (3.21)

Eliminating the terms corresponding to inactive constraints

from equation (3.21), since those Xk = 0, yields

+ 1 J (3.22)

where kact represents keKact. Note that the values of

w. are known constants and assume that the values of

the gk,j are known for all combinations of design var-

iables jeJ and active constraints kjK act' then equation

(3.22) represents a set of simultaneous linear equations

in which the Xk are the unknowns. Since the number of
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design variables NDV is not necessarily equal to the

number of active constraints, it is in general not

possible to directly solve (3.22) for the Ak . Conse-

quently an indirect method must be employed to solve

for the Ak values.

First consider the following optimization problem

in which the Xk are the unknowns

Minimize = k L (3.23)

If a solution is obtained which minimizes I and Imin

has zero value, then this solution gives a set of the

optimal values for the multipliers Xk , and the design

cannot be further improved. If the minimum value of

I is greater than zero, it means that the value in

the parentheses is not equal to zero for at least one j,

and therefore the design can be improved. The problem

given by (3.23) can be transformed to the following

linear programming problem

NAC

Minimize )

subject to

1(3.24)
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Now this problem can be solved by the Simplex Method,

for example. The method to be used in estimating the

value of the gk,j will be discussed in subsequent sec-

tions dealing with each of the particular constraint

types considered.

In executing the compptation, however, special

attention must be given to identifying the maximum or

minimum size elements as well as active and inactive con-

straints. First consider the problem of determining

those elements that are to take on their maximum or min-

imum values. Generally no information is available on this

at the outset and therefore an iterative procedure is re-

quired. The procedure is outlined as follows:

(1) Initially assume that all design variable side

constraints are inactive, i.e., Dmin < D < Dmaxjmin j jmax'

for all j, and compute the value of Ak using (3.24);

(2) Calculate (Dj)s+l from equations (3.19) and (3.20),

and use the results to identify the active design

variable side constraints;

(3) If the distinction remains unchanged, it is done,

otherwise, use the new distinction to repeat the

procedure.

This iterative process must be carried out during each

redesign step until the set of active side constraints

has definitely stabilized and remains unchanged.
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Next consider the problem of identifying the set

of active behavior constraints.t The procedure discussed

in the foregoing paragraph will be applicable, however,

it may waste a great deal of computational effort, because

in structural optimization problems, a large number of

behavior constraints usually need to be considered but

a relatively small number of these constraints are

active.

The procedure is as follows:

(1) Select several active constraint candidates if they

are known;

(2) Analyze the current design and evaluate all con-

straints;

(3) Find the most critical constraint, which may or

may not be violated, and compare it with the

list of preselected active constraint candidates;

(4) If it is already an active candidate, continue

with the current list, otherwise, add it to the

list of active constraint candidates;

(5) If the number of active constraint candidates exceeds

the number of design variables, eliminate the one

which is least critical during the redesign step.

tThis is not necessarily required because even if inactive
constraints participate in the process, they will be auto-
matically eliminated by the computational result of k =0
for the corresponding k.
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In the foregoing method, there is no need to compute the

Xk corresponding to inactive constraints, and this sub-

stantially reduces the computational effort required.

Now an entire optimization procedure based on

optimality criteria concept is available and it is

summarized as follows (see Fig. 6):

(1) Select several active constraint candidates and

pick an initial design;

(2) Analyze the current design and evaluate all con-

straints;

(3) Find the most critical constraint and determine the

active constraint candidate group for the upcoming

redesign step;

(4) Compute the gradients of the active constraint candi-

dates;

(5) Compute the value of multipliers Ak from (3.24) and

use the results to generate a new design from equa-

tions (3.19) and (3.20);

(6) Determine which elements are to take on their max-

imum or minimum values and repeat (5) and (6) until

the set of active design variable side constraints

has stabilized;

(7) Check to see if the new design satisfies the pre-

scribed termination conditions. If so, go to (8),
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otherwise, go to (2) and repeat;

(8) Evaluate the remaining behavior constraints using

the final design and stop.

The purpose of step (8) is to check on whether or not

the final design is the optimal solution of the whole

problem under consideration and to obtain information

for selecting active constraint candidates in the other

subproblems.

At this point some points which should be noted

when applying the present method to an actual design

problem are discussed. As is obvious from the deriva-

tion, the optimality criteria are nothing more than

the necessary conditions for local optimality, and they

do not guarantee that the design obtained by the present

method is the global optimum. An example of this situa-

tion is shown in Fig. 7, where either DI, D2 or D* will

be obtained. Among them, however, only D* is the opti-

mum design, and the other two are obviously not optimal.

But this situation can be avoided by setting up some

limitations on the values of multipliers. At design

D*, both constraints are active, and it follows that

the values of Al and A2 must be non-negative. At design

1 gl is active and g2 is inactive but violated, and at

D2 ' 91 is inactive but violated. This situation suggests

that the value of a multiplier Ak corresponding to a
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g= 091 0

91 < 0

g2 > 0 92 < 0

g1 > 0

1 D

D22

W= W
W = W

W = W2

Fig. 7 Illustration of Optimum Design and

Infeasible Designs
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violated constraint should be positive. Based on

this fact, we set up the limitation on the value of

multiplier as

Z E 6 (k ) (3.25)

for violated constraints instead of Ak > 0 in (3.24).

The value of Ek may be determined in various ways, but

it will be better to define it as a function of (gk/gk*) ,t

and the function should be defined for each problem. In

the effort reported here

E cl ( -Y I), I*" j (3.26)

was used, where ack is an appropriate constant.

Another example is shown in Fig. 8, where the opti-

mality criteria are satisfied by design Dl' D2 and D3.

Among them D1 is the global minimum, D2 is a local mini-

mum, and D3 is a local maximum. An effective method

of coping with this situation has not been found, and

it would appear that this difficulty represents one

of the current shortcomings of the optimality criteria

approach. It should be noted, however, that the formida-

ble difficulties posed by relative minima are not unique

to the optimality criteria approach.

tFor the notational convenience, we rewrite the constraint
in the form gk - gk* < 0, where gk* denotes the specified
upper bound on gk'
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Local Minimum and Local Maximum
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3.2 Stress Constraint

Even for the simplest class of structures, such as

trusses, the optimality criteria approach developed in

section 3.1 is not practical for stress constraints.

However, there is a usefulmethod, which is commonly

used, that does not require the derivatives of constraints

although it deviates somewhat from the general optimiza-

tion theory.

In structural design, it has often been assumed

intuitively that the best design is one for which every

mode of failure considered would occur simultaneously.

From this idea it followed that for stress limited design

problems the best design would be one in which each member

is fully stressed under at least one load condition. How-

ever, it was shown by Schmit [l] that the fully stressed

design is not necessarily the minimum weight design.

Nevertheless, the fully stressed design scheme still has

practical significance because of the following charac-

teristics:

(1) The fully stressed design always coincides with

the minimum weight design for statically deter-

minate structures.

(2) For the case of statically indeterminate structures,

the fully stressed design may be a good approxima-

tion that is often acceptable for practical purposes.
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(3) The fully stressed design procedure is familiar

and easy to apply in comparison with methods based

on mathematical programming concepts.

For these reasons the fully stressed design concept is

adopted here as the source of design basis vectors for

stress constraints. That is, "the optimum design for

stress constraints is assumed to be one in which each

member is fully stressed under at least one of the load

conditions."

The fully stressed design is usually obtained by

the stress ratio method which is derived based on the

assumption that the internal force distribution remains

unchanged during modification of the design variables

in each redesign step. This is equivalent to

Ti Ai )s =  (3.27)

where A.* denotes the optimal design for Ai.  Conse-

quently, the following redesign equation can be obtained

C A ),,, = CZ (A;)s (3.28a)

where

C; '
(3.28b)

;- (T), o41
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For linked design variable D.j, the redesign equation

must be modified as follows:

( Dj)s, = Cj Dj ), (3.29a)

where

C = Max CZ (3.29b)

Including size constraints, equation (3.20) must be con-

sidered together with equations (3.29). The redesign

procedure can now be summarized as follows:

(1) Pick an initial design;

(2) Analyze the current design and compute the stress

ratio for each combination of elements and load

conditions;

(3) Find the maximum stress ratio for each design variable;

(4) Generate a new design using (3.29) and (3.20);

(5) Check to see if the new design satisfies the pre-

scribed termination conditions. If so, go to (6),

otherwise, go to (2) and repeat;

(6) Evaluate the remaining behavior constraints using

the final design and stop.

This procedure is shown in block diagram form in Figure

9.

42



Pick initial design.

Analyze current design

and compute stress ratios

for all combinations of

elements and load conditions

Find the maximum stress ratio

for each design variable.

Compute new design using eqs.

(3.28),(3.29)and (3.20).

No Does the design satisfy Yes
termination conditions?

Evaluate other constraints

Stop.

Fig. 9 Block Diagram of Stress Ratio Method
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3.3 Displacement Constraint

As shown in Chapter II, a displacement constraint

is given by

L = L. (AUci  (3.30)

In the majority of practical problems, UUij is positive

and ULij is negative. Assuming this is so, the con-

straint can be expressed in the following form:

LA (3.31)

where u is a displacement vector including u.. in its13
ith row, and I is a unit force vector which has only

one nonzero element in its ith row, namely

{ = (3.32)

since T- represents the absolute value of displacement

u.. and u..* denotes13 13

U U ui  'L i X--

LA (A L((3.33)

Hereafter equation (3.31) will be taken as the displace-

ment constraint form because this form facilitates the

derivation of partial derivatives (Dg/aDj) assuming the

use of a displacement type finite element method of struc-

tural analysis. For the sake of simplicity, a case with
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only one constraint will be considered, let

= <- U; O . (3.34)

then

k (3.35)

From equation (3.1d)

- = ) d a (3.36)

Since f is independent of the design variables

The static equilibrium equations for the displacement method

of structural analysis may be written in matrix form as

L K ] L = F (3.38)

where [K] is the stiffness matrix of the structure, and

? is the external load vector. Assuming F is independent

of Ai and differentiating both sides of equation (3.38)

gives

u- [K K I
A; - A ( (3.39)

Substituting equation (3.39) into equation (3.37) yields

S - _-45 K - (3.40)
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Now define a new vector such that

Y = L] (3.41a)

then r represents the response of the structure to the

unit force vector I. Since [K] is symmetric

J f J (3.41b)

For the class of structures considered in this study,

the stiffness matrix can be expressed in the following

form

NMH
[K] [k; A (3.42)

where [ki] is the unit element stiffness matrix for element

i, which is independent of the element size. Therefore

Substituting equations (3.41b) and (3.43) into equation

(3.40) gives

T (3.44)

From equations (3.35), (3.36) and (3.44), it follows that

)- [ (3.45)

Using equation (3.17), the optimality criteria for a

single displacement constraint is obtained, namely

a- i r Uit,4r 6 (3.46)
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Multiplying both sides of equation (3.46) by Dj yields

the following standard form

\A/i - U 0 E, or J (3.47a)

where

W 4t- j -(3.47b)

i U Lkil u (.3.47c)

Now W. represents the total weight of the elements in

the group j, and U. is the internal virtual work in those

elements associated with the jth design variable (Dj)

Equation (3.47a) can be rewritten as

A -Ld (3.47d)

Therefore the optimality criterion can be stated as "the

ratio of the internal virtual work over the weight is invar-

iant for all active element groups."

For the case of multiple constraints, the criteria

can be generalized as follows

Nc

W - x U 0 j fo j * (3.48a)

where

0 4or E K act
(3.48b)

S, -r k -r K ct
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and Ukj represents U. for the kth constraint.

Consideration is now given to the redesign equation.

Initially the same assumption used in fully stressed design

(see Section 3.2) is made, that is, the internal force

distribution remains unchanged during modification of

design variables in each redesign step. Then the follow-

ing relations must be satisfied for the case of one con-

straint, if

(Di )s5 ( Di)s (3.49a)

then

S ) C i  ) (3.49b)

and

Uj)st, Uj)s (3.49c)

At iteration s, if Wj. - AU. $ 0 for some j which are

assumed to be active, then (Dj)s+l must be determined so

that

Wj)o- W Uj) , 0 (3.50)

Substituting equations (3.49b), (3.49c) into equation

(3.50), and solving for Cj, we get

C j (3.51)

If the value in the parentheses in equation (3.51) is
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negative, it means that D. must be inactive, i.e., Dj = 0.

For the case of multiple constraints

Ci = I (3.52a)

where

NC ( H.. \
T. x wk, (3.52b)

Based on the foregoing discussion, the redesign equation

can be summarized as

0 , i1 I ( o

where C. and I. are defined respectively by equations

(3.52a) and (3.52b). Including size constraints, equation

(3.20) must be employed concurrently.

Finally, consider the method used to compute the

values of multipliers. Since the general idea was pre-

sented in section 3.1, it is only necessary to discuss

the method used to compute Ukj/Wj, which corresponds to

the term of gk, /w in section 3.1. For the active

constraints, the following relation must be satisfied:

NDV

i = Uk (3.54a)

NDV

~) (u ) = (Ak ) (3.54b)
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where uk* is the specified value of the kth constraint

and (Uk)s denotes the corresponding displacement for

the current design. They can be divided into active

and passive parts as follows

NDV

L, uiU - 2 . kj + U lj (3.55a)

NDV

.. ( j), (U,) ,- _. (ui) (3.55b)

Again using the same assumption employed in fully stressed

design

Z ulJ = r (un j (3.56)

Let Uko denote the value of 7 (Z Uj )s and let

U,, uk- , Y,- T (3.57)

then Ukj satisfies equation (3.54a). Based on this fact

the following equation can be used to estimate the value

of Ukj /Wj,

( LL) (Alt 1,) SU S k) U(3.58)

because (Ukj) < 0 means that D. is inactive at least for

the constraint. After obtaining the values of the Ukj/W j
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the Xk are obtained by solving the linear programming

problem defined by (3.24).
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3.4 Buckling Constraint

As indicated in Chapter II, a buckling constraint

is given in the following form

=k fp- < 0 (3.59)

and pk is defined by

ITI U I LAk (3.60)

where the subscript k denotes that the buckling load under

consideration is the kth constraint. Let pk* denote

the prescribed lower bound on pk' let uk represent the

corresponding buckling mode shape, and let [KG] denote

the geometric stiffness matrix of the structure, which

is symmetric and independent of element sizes for the

class of structures considered here.

Differentiating both sides of equation (3.60) with

respect to Ai, we get

[ ]A= it KU to a[ K (3.61)

Premultiplying equation (3.60) by [a4/2AT3T  and

premultiplying equation (3.61) by uk , then subtracting

the former from the latter yields

L u= ^ u [K,] (o (3.62)

From equations (3.36), (3.59) and (3.62), we get
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' -L _ ___ _ (3.63)

Substituting equation (3.63) into equation (3.17) yields

- {or 'EJ (3.64)

Multiplying equation (3.64) by Dj, leads to the following

optimality criterion, namely

NC
k l = , b y J (3.65a)

where

U swi LA ft )t (3.65b)

MW Ue JKl U, it(3.65c)

The redesign equation can be obtained in exactly the same

manner as for displacement constraints, and that is

(D))st =- I(3.66a)

where

-- == --- (3.66b)

and

Ci - I:  (3.66c)
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Including size constraints, equation (3.20) must be

employed concurrently with equation (3.66a).

The value of Xk can be estimated in the same manner

too. For an active constraint

NDV

-7 = ? (3.67a)i-' Mk

DVj ( ) 
(3.67b)

They can be divided into active and passive parts as

follows:

WDV

U . Uj UI.j (3.68a)

NIDV

Again using the same assumption employed in fully stressed

design

ZU Z ( Uj) (3.69)

Let pkO denote the value of 2Z. ( U~), , and let

(u_) - -J (3.70)Hk Mk J ( i),- f*

then equation (3.67a) is satisfied. Based on this, it
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follows that the following equation may be used to estimate

the value of Ukj/MkW
j

I= (3.71a)

wK M )kg iM itj(O

where

(t jWj (3.71b)
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3.5 Natural Frequency Constraint

A lower limit natural frequency constraint is

given by

k ± 0 (3.72)

and qk is defined by

[K] Ut= %k[M]tw (3.73)

where the subscript k denotes that the frequency under

consideration is the kth constraint. Let qk* denote

the prescribed lower bound on qk, and let uk represent

the corresponding natural mode shape. The mass matrix

of the structure considered is represented by [M] and

for the class of structures considered here

NM

[M] Z [mlAz (3.74)

where the [mi ] are unit element mass matrices independent

of the element size.

Through a development that runs parallel to that

used in the case of a buckling constraint, the following

optimality criterion can be obtained

It-% - 9 tTi> o Uot (3.75a)
Tk J

where

-4 T
U = It i D i UL ] U1 (3.75b)
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Tit G=i U ( itin Ut (3.75c)

T = (A, [M] U (3.75d)

The redesign equation is also obtained in a manner anal-

ogous to that previously employed in the case of a buckling

constraint and the result is

Ci ( Da) s , -I0 -
SDi  (3.76a)

where

(3.76b)

and

Ci = 1. (3.76c)

If size constraints are imposed, then equation (3.20)

must be used in conjunction with equations (3.76).

For an active constraint, the following relation

must be satisfied

NDV

(u~- T ) 0 (3.77)iTt

Consequently

(ut -- (U - ) (3.78)
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Now we assume that

u, r (3.79)

then

E C( UB- ? k Tj) = -. (Ugj- I T )5  (3.80)

Define the following two quantities

(3.81)

and let

U = (U ,j, Q p

.~V ET (3.82)

then equation (3.77) will be satisfied. Therefore the

following equation is used to estimate the value of

(Ukj - k*Tkj)/TkWj,

U J k kj k j

UTj j rT Gr if Ig a

U= (3.83a)

T- r j [_ . if I j
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where

I T (3. 83b)

An upper limit natural frequency constraint is given by

I )- t- z < 0
In this case, the optimality criterion, the redesign equa-

tion, and the estimation of the value [(Ukj - q kj)/T k

can be immediately obtained from equations (3.75), (3.76),

and (3.83), respectively, by replacing the term

(Ukj - qk*Tkj) by -(Ukj - qk*Tkj)
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CHAPTER IV

NUMERICAL EXAMPLES

Computer programs that generate basis design vectors

were written implementing some of the optimization pro-

cedures presented in Chapter III. These programs were

coded in FORTRAN H and were run on an IBM 360/91 compu-

ter. An optimization program called CONMIN was used

to obtain the final results reported herein. The

program CONMIN, developed by Vanderplaats [171, is

based on a modified feasible directions method.

Several design examples are presented here to

illustrate the effectiveness of the method developed

in this study. These examples include two and three

dimensional trusses, and in each example, except for

the first one, stress, displacement and minimum size

constraints are included. Some multiple load con-

dition cases are also considered.

In order to make the method more effective, an

approximation technique is employed for estimating

stresses and displacements during the generation of

basis design vectors. This technique, which is based

on using first order Taylor series expansions to expli-

citly approximate stresses and displacements in terms

of reciprocal design variables (see Appendix D), signi-

PRECEDING PAGE BLANK NOT FILMED
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ficantly reduces the number of structural analyses needed

to generate the design basis vectors. Hereafter, the

optimization method combined with the Taylor series

approximation technique will be referred to as revised

method, and the method without the use of the Taylor

series approximation technique will be designated as

the ordinary method. The effectiveness of the revised

method is demonstrated by comparison with the ordinary

method in some examples.
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4.1 9 Bar Truss

The first example problem is a nine bar space truss

(see Fig. 10) which is studied to demonstrate the appro-

priateness of the optimization procedure developed in

Chapter III in comparison with those which were given

by Gellatly [9] and by Venkaya [ll (see Appendix E).

For the sake of simplicity, only generalized stiffness

constraints which can be called "total strain energy

constraints" (see Appendix C) are considered. The

material properties and the specified value of con-

straints (upper limit on total strain energy) are given

in Fig. 10. For this example, two distinct cases are

considered, and the load conditions for each case are

given in Table l(a). Design variable linking is used

to impose symmetry with respect to both the x-z and

y-z planes, and the number of design variables is three.

Results for these two cases are summarized in Table

l(b). In case 1, the minimum weights obtained are essen-

tially the same, although Venkaya's design is heavier

than the others by 6%. In case 2, however, the design

obtained by the present method is lighter than the

others by almost 20%. It is also noted that in the

present design, both constraints almost reach the spe-

cified upper limit, but in the other designs the total
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60

100

Material: Aluminum, E = 107 psi, p = 0.1 pci

Minimum Size: 0.01 in2

Maximum Size None

Energy Limits: 100 lb-in on both load conditions

Figure 10. 9 Bar Truss
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Table 1 Design Data and Results for Example 4.1

(a) Load Conditions (lb)

Load Direction
Case Condition Node X Y Z

1 5 2000.0 0.0 -3000.0

1 6 0.0 0.0 -3000.0

2 5 0.0 4000.0 0.0

6 0.0 -4000.0 0.0

5 3000.0 0.0 0.0

2 6 -3000.0 0.0 0.0

2 5 0.0 4000.0 0.0

6 0.0 -4000.0 0.0

(b) Summary of Results

No. of Weight Element Size (in 2 )  Strain Energy
Case Method Analyses (ib) 1 2 5 6 9 Ld. 1 Ld. 2

1 Venkaya 10 30.5 0.678 1.180 0.158 100.0 83.2
Geliatly 9 28.8 0.736 0.966 0.173 100.0 92.6
Present 10 28.2 0.776 0.883 0.197 100.2 101.7
Venkaya 8 22.8 0.875 0.918 0.01 30.7 100.0

2 Gellatly 8 22.7 0.869 0.911 0.01 30.8 100.5
Present 8 19.1 0.275 0.911 0.01 95.5 100.5



strain energy under load condition 1 is only 31% of the

specified limit, which makes these'designs much heavier

than the present one.

As is obvious from Appendix E, both Venkaya's and

Gellatly's methods are approximate, and they do not

guarantee that all the active constraints achieve their

limits at the same time. It follows that the design

obtained by these methods cannot be expected to neces-

sarily be optimal, and in some cases, the results may

be rather far away from the optimal design . As illus-

trated by this example, on the other hand, the present

method is able to overcome this shortcoming and it can

be expected to produce better results.
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4.2 10 Bar Truss

The second example problem is the familiar ten bar

planar truss (see Fig. 11) for which results have been

previously reported in [9],[1 and [14]. The material

properties, stress limits and minimum sizes are given

in Fig. 11. For this example four distinct cases are

considered. In case 1-a, the truss is subject to a

single load condition consisting of 100 Kip downward

loads applied at joints 2 and 4 (see Fig. 11) and no

displacement limitations are imposed. Case 1-b is the

same as case 1-a but with vertical displacement limits

of ± 2.0 in. imposed at all joints. In case 2-a the

truss is subject to a single load condition consisting

of 150 Kip downward loads applied at joints 2 and 4 as

well as 50 Kip upward loads at joints 1 and 3, and no

displacement limitations are imposed. Case 2-b is the

same as case 2-a but with vertical displacemerit limits

of ± 2.0 in. imposed at all joints. No design variable

linking is employed in this example, therefore, the num-

ber of design variables is ten.

Results for cases 1-a and 2-a are summarized in

Table 2, where part (a) of the table contains the results

obtained by the ordinary method, part (b) of the table

contains those obtained by the revised method, and part

67



360 . 360

5 (1) 3 P2 (2) 1 P 2

(7) (9)

(5) (6) 360

(8) (10)

6 (3) 4 (4) 2

1 P1

Material : Aluminium, E = 107psi, p = 0.1 pci

Minimum Size 0.01 in2

Maximum Size None

Load Conditions

Case 1 : P1 = 100 kip, P2 = 0

Case 2 : P 1 = 150 kip, P2 = 50 kip

Stress Limmits 25,000 psi

Fig. 11 10 Bar Truss
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Table 2 Results for Example 4.2 (1)

(a) Results obtained by Ordinary Method

No. of Weight Element Size (in )

Case Analyses (Ib) 1 2 3 4 5 6 7 8 9 10

1-a 12 1591.7 7.88 0.11 8.12 3.89 0.1 0.11 5.82 5.49 5.50 0.16

2-a 8 1664.4 5.94 0.1 10.06 3.95 0.1 2.05 8.56 2.75 5.58 0.1

(b) Results obtained by Revised Method

No. of Weight Element Size (In 2)
Case Analyses (lb) 1 2 3 4 5 6 7 8 9 10

1-a 6 1593.4 7.94 0.1 8.06 3.94 0.1 0.1 5.74 5.57 5.57 0.1

2-a 6 1664.6 5.95 0.1 10.05 3.95 0.1 2.05 8.56 2.76 5.58 0.1

(c) Stresses for Results shown in (a) and (b)

Stresses (psi)

Case 1 2 3 4 5 6 7 8 9 10

(a) 1-a 25088. 19098. -24914. -25173. -871. 19098. 24831. -25180. 25173. -19098.

z-a 25012. 13097. -24993. -25006. -112. 24998. 24989. -25035. 25006. -18522.

(b) 1-a 24991. 15516. -25006. -24997. 76. 15516. 25010. -24980. 24997. -21943.

2-a 24996. 13094. -25002 -24999. 38. 25002. 25004. -24 9 88. 24999. -18454.



(c) of the table displays the stresses corresponding

to the designs shown in (a) and (b). It is apparent

from these results that the approximate analysis tech-

nique is rather effective in reducing the total number

of analyses needed to obtain an optimum design. The

results shown in part (b) of Table 2 indicate that the

minimum weights obtained are just the same as those re-

ported in Ref. 1 14], and it is interesting to note

that the fully stressed designs obtained coincide with

the actual optimal designs in this case.

Table 3 shows the results of generating basis de-

sign vectors for displacement constraints. Part (a) of

the table contains the results obtained by the ordinary

method, and part (b) of the table contains the results

obtained by the revised method. Parts (c) and (d) of

the table display the displacements corresponding to

the designs shown in (a) and (b), respectively. The

results obtained by both methods are essentially the

same, however the number of analyses required is cut

in half when the revised method is employed. Observing

the optimization process, it was found that this ex-

ample exhibits a particularly interesting behavior.

This behavior is well illustrated by following the

iteration history generated by the ordinary method.

In case 1-b, initially the vertical displacement at

70



Table 3 Results for Example 4.2 (2)

(a) Basis Design for Displacement Constraints obtained by Ordinary Method

No. of Weight Element Size (in 2 )

Case Analyses (ib) 1 2 3 4 5 6 7 8 9 10

1-b 14 5044.9 31.14 0.1 22.54 15.42 0.1 0.41 5.83 22.07 21.81 0.1

2-b 14 4502.3 24.48 0.1 23.49 14.03 0.1 0.97 9.31 14.51 19.85 0.1

(b) Basis Design for Displacement Constraints obtained by Revised Method

No. of Weight Element Size (in )

Case Analyses (ib) 1 2 3 4 5 6 7 8 9 10

1-b 8 5034.4 31.03 0.1 22.50 15.32 0.1 0.79 5.80 21.93 21.67 0.1

2-b 7 4504.3 24.52 0.1 23.48 14.05 0.1 0.96 9.27 14.54 19.87 0.1

(c) Displacements for Design (a) (d) Displacements for Design (b)

1-b 2-b 1-b 2-b

Node X Y X Y Node X Y X Y

1 0.095 -2.002 -0.381 -0.205 1 0.092 -1.996 -0.391 -0.196

2 -0.541 -1.942 -0.636 -2.006 2 -0.550 -1.977 -0.636 -2.002

3 0.233 -0.706 0.229 -0.618 3 0.237 -0.719 0.228 -0.617

4 -0.309 -1.974 -0.375 -1.937 4 -0.314 -2.000 1-0.375 -1.963



joint 2 was assumed to be critical. At the 8th it-

eration, the vertical displacement at joint 1 be-

came most critical, and at the 9th iteration, .a feas-

ible design of weight 5227.1 lb. was obtained. However,

at the 10th iteration, the weight jumped up to 7579.0

lb. and the vertical displacement at joint 4 also became

critical. After five more iterations the design weight

of 5044.9 lb. was obtained, and for this design all

three of the previously mentioned displacement constraints

were critical. The iteration history for this case

(Example 4.2 , case 1-b) is shown in Fig. 12. In

case 2-b, the vertical displacement at joint 2 was ini-

tially assumed to be critical. In the 6th iteration,

the vertical displacement at joint 4 became critical and

seriously violated. Consequently, the weight suddenly

increased in the 7th iteration and the displacement at

joint 2 became most critical again. Finally a design

weighing 4502.3 lb. was obtained, and for this design

both the constraints were critical. The iteration history

for this case (Example 4.2 case 2-b) is shown in

Fig. 13. A similar phenomenon was reported in Ref. [9]

for this same problem. The dramatic rise in weight may

be associated with a major redistribution of the internal

forces in the structure.

The final design for cases 1-b and 2-b are summarized
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together with actual stresses and displacements for the

design in Table 4. In both cases the minimum weights

obtained are essentially the same as those previously

reported in Refs. [11] and 114]. The respective criti-

cal constraints are the tensile stress in element 5

and the vertical displacement at joints 1 and 2 in case

1-b, and the tensile stress in element 5 as well as the

vertical displacement at joint 2 in case 2-b.
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Table 4 Results for Example 4.2 (3)

(a) Final Design

No. of Weight Element Size (in2

Case Analyses (lb) 1 2 3 4 5 6 7 8 9 10

1-b 7 5077.6 30.53 0.13 23.08 15.08 0.13 0.73 7.45 21.56 21.33 0.13

2-b 7 4708.6 23.88 0.14 25.32 13.99 0.14 1.96 12.57 13.73 19.78 0.14

(b) Stresses for Design (a) (c) Displacements for Design (a)

Case 1-b 2-b
l-b 2-b

Element Node X Y X Y

1 6663. 6469. 1 0.195 -2.000 -0.031 -1.099

2 -1257. -7334. 2 -0.546 -1.992 -0.609 -1.999

3 -8519. -9698. 3 0.240 -0.728 0.233 -0.637

4 -6642. -7223. 4 -0.307 -1.627 -0.349 -1.528

5 24962. 24747. (in)

6 -222. 25000.

7 18334. 16371.

8 -6782. -5611.

9 6642. 7223.

10 1778. 10372.

(psi)



4.3 25 Bar Truss

The third example problem is a twenty five bar space

truss (see Fig. 14) for which results have been previ-

ously reported in Refs. [9], and [14]. The material proper-

ties, tensile stress limits, displacement limits and mini-

mum size constraints are given in Fig. 14. The allowable

compressive stress limits are listed in Table 5(b), and

they correspond to those given in Ref. 19]. The struc-

ture is subject to two distinct load conditions as given

in Table 5(a). Displacement limits of ± 0.35 in. are

imposed on all joints in all directions. Design variable

linking is used to impose symmetry with respect to both

the x-z and y-z planes, and the number of design var-

iables is eight.

Table 5(b) shows the basis design vector for stress

constraints which was obtained by the ordinary method.

The basis design vectors for displacement constraints

are obtained by both the revised and the ordinary methods

respectively. The results are shown in Table 6(a) and

their iteration history is shown in Fig. 15. In both the

designs shown in Table 6(a), critical displacements were

those in the y direction at joint 1 and 2 under both

the load conditions. The final design obtained is shown

in Table 6(b), and the weight is very close to the lightest
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Fig. 14 25 Bar Truss
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Table 5 Results for Example 4.3 (1)

(a) Load Conditions (lb)

Load Direction

Condition Node X Y Z

1 1000.0 10000.0 -5000.0

1 2 0.0 10000.0 -5000.0

3 500.0 0.0 0.0

6 500.0 0.0 0.0

2 1 0.0 20000.0 -5000.0
2

2 0.0 -20000.0 -5000.0

(b) Basis Design for Stress Constraints obtained by Ordinary MethOd

No. of Weight Element Size (in 2)

Analyses (ib) 1 2 r 5 6 r' 9 10, 11 12, 13 14~l7 18r21 22125

4 344.0 0.01 1.250 1.115 0.01 0.01 0.552 1.648 1.336

Allowable Stress -35092. -11590. -17305. -35092. -35092. -6759. -6959. -11082.

(psi)



Table 6 Results for Example 4.3 (2)

(a) Basis Designs for Displacement Constraints

No. of Weight Element Size (in2)

Method Analyses (ib) 1 2 r 5 6 ' 9 10,11 12,13 14,17 18%21 22,25

Rev. 4 543.6 0.01 2.082 3.032 0.01 0.01 0.662 1.656 2.569

Ord. 8 543.6 0.01 2.082 3.032 0.01 0.01 0.662 1.656 2.569

(b) Final Design

No. of Weight Element Size (in2)

Analyses (lb) 1 2 O 5 6 " 9 10,11 12,13 14017 18%21 22025

9 551.6 0.010 2.112 3.063 0.010 0.010 0.674 1.690 2.602

(c) Final Designs obtained by using Quasi Basis Designs

No. of Weight Element Size (in2)

Case Analyses (ib) 1 2 1 5 6 % 9 10,11 12,13 14%17 18%21 22%25

1 6 584.9 0.013 2.442 3.169 0.013 0.316 0.663 1.947 2.396

2 5 563.0 0.013 2.078 2.667 0.013 0.013 0.748 2.070 2.547



by Ordinary Method

0.6 - by Revised Method 600

0.5 - Weight -500
0.5 500

0.4 400
04 Displacement

0.3 300

0.2 200

1 2 3 4 5 6 7 8 9 10 11 12

Number of Analyses

Fig. 15 Comparison of Iteration History for Ordinary

and Revised Methods for Example 4.3



weight previously reported. The final critical con-

straints are the stresses in elements 19 and 20 under

load condition 2, and the displacements in the y direc-

tion at joints 1 and 2 under load condition 1.

The designs obtained by using another two sets of

basis design vectors are shown in Table 6(c). In case

1 the basis design vectors are obtained by executing

only one iteration in each procedure for generating the

basis design vectors previously used. In case 2 the

basis design vectors were obtained in such a way that

the redesign procedure was carried out using the Taylor

series approximations after two exact structural analyses.

The weights obtained are higher than that of the exact

design by about 6% and 2%, respectively, however these

results have practical significance since the computa-

tional effort required to obtain them is significantly

less than that needed to produce the results given in

Table 6(b).

82



4.4 72 Bar Truss

The last example problem is a seventy two bar space

truss for which results have been previously reported

in Ref. [9], 111] and [14]. Figure 16 shows the geo-

metry of the structure, and the node as well as element

numbering system is illustrated in detail for the upper

tier. The material properties, stress limits, displace-

ment limits and minimum sizes are given in the same figure.

The structure is subject to two distinct load conditions

as given in Table 7. Displacement limits of ± 0.25 in.

are imposed on all joints in all directions. Design

variable linking is employed, and the number of indepen-

dent design variables is sixteen.

The basis design vector for stress constraints is

given in Table 8(a), and that for displacement constraints

is given in (b). Both the basis design vectors were ob-

tained by the ordinary method. The final design obtained

is listed in Table 9(a). The weight for the design is

384.8 lb., and is very close to the lightest weight pre-

viously reported in ill]. The final critical constraints

are the compressive stresses in elements 1,2,3 and 4

under load condition 2 and the displacements in both the

x and y directions at joint 1 under load condition 1.

The design obtained by using another set of basis design
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Fig. 16 72 Bar Truss
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Table 7 Load Conditions for Example 4.4

Load Direction

Condition Node X Y Z

1 1 5000.0 5000.0 -5000.0

1 0.0 0.0 -5000.0

2 2 0.0 0.0 -5000.0

3 0.0 0.0 -5000.0

4 0.0 0.0 -5000.0

(lb)



Table 8 Results for Example 4.4 (1)

(a) Basis Design for Stress Constraints

No. of Weight Element Size (in2

Analyses (lb) 14 5L12 1316 17,18 19r22 2330 31%34 35,36

0.189 0.1 0.1 0.1 0.190 0.1 0.1 0.1

3 96.6 37'40 41L48 49%52 53,54 55158 59-66 67%70 71,72

0.199 0.1 0.1 0.1 0.294 0.1 0.1 0.1

(b) Basis Design for Displacement Constraints,

No. of Weight Element Size (in2 )

Analyses (lb) 1 - 4 5 -12 13%16 17,18 19%22 23%30 31%34 35,36

0.136 0.532 0.401 0.548 0.685 0.502 0.1 0.1

9 376.7 37%40 41 48 49052 53,54 55-58 59-66 67070 71,72

1.309 0.497 0.1 0.1 1.890 0.498 0.1 0.1



Table 9 Results for Example 4.4 (2)

(a) Final Design obtained using ordinary method Basis Designs

No. of Weight Element Size (in2)

Analyses (lb) 1 - 4 5 '12 13-16 17,18 19~22 23-30 31-34 35,36

0.154 0.540 0.410 0.556 0.701 0.510 0.109 0.109

8 384.8 37-40 41-48 49~-52 53,54 55-58 5966 67~70 71,72

1.324 0.505 0.109 0.109 1.912 0.506 0.109 0.109

S(b) Final Design obtained by using Quasi Basis Design

No. of Weight Element Size (in2)

Analyses (lb) 1 -- 4 5 -12 13116 17,18 19%22 23-30 31 34 35,36

1.404 0.525 0.347 0.484 1.601 0.488 0.116 0.116

7 460.4 3740 41l48 49%52 53,54 55%58 59n66 67%70 71,72

2.044 0.486 0.116 0.116 2.372 0.541 0.151 0.116



vectors is shown in Table 9(b). These basis design vec-

tors are obtained by executing only one iteration in each

procedure for generating the basis design vectors previ-

ously used. The weight obtianed is 460 lb. and it is

heavier than the other design by almost 20%.

Finally the number of structural analyses and CPU

runtime are summarized in Table 10 for each example

problem.
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Table 10 Summary of Number of Analyses and Run Times

Weight No. of Analyses ana CPU Run Time (sec)

Example Case (ib) Stress Displacement Final Total

1-a 1593.4 6 0.16 - 6 0.16

1-b 5077.6 6 0.16 8 0.53 7 0.16 21 0.85

4.2
2-a 1664.6 6 0.15 - -- -- -- 6 0.15

2-b 4708.6 6 0.15 7 0.33 7 1 0.23 20 0.71

551.6 4 0.25 4 0.67 9 1.67 17 2.57

4.3
*1 563.0 2 0.26 2 0.54 5 0.42 9 1.22

*2 584.9 1 0.07 1 0.17 6 0.85 8 1.09

384.8 3 0.88 9 2.11 8 5.40 20 8.39

4.4
* 460.4 1 0.29 1 0.24 7 4.09 9 4.62

* indicates the use of Quasi Basis Design.



CHAPTER V

CONCLUSIONS

In this study, the primary effort was focused on

the derivation of optimality criteria and the develop-

ment of rational recursive redesign procedures based

on the optimality criteria. Optimality criteria, which

are equivalent to the necessary conditions for local

optimality, were derived for a general case, so that

they could easily be specialized for each type of

behavior constraint considered. Special attention

has been given to developing design optimization procedures

for basis vector generation that: (1) are rational; (2)

are efficient; (3) yield feasible basis design vectors.

The recursive redesign procedures presented are based

on optimality criteria concepts. Furthermore the pro-

cedures presented are rational and they do not exhibit

the shortcoming present in some of the previously reported

methods (for example, see [9] and [11]), for cases in-

volving multiple constraints (of the same behavior type)

and multiple load conditions. As shown in example problem

4.1, this was accomplished by the use of a minimum square

method to estimate the optimal values of the multipliers.

It is also noted that the estimation procedure requires

little additional effort because the values of the mul-

PRECEDING PAGE BLANK NOT FILMED
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tipliers can be obtained by an equivalent linear program-

ming method. The procedures presented for generating

basis design vectors are efficient. To attain this

efficiency, a method for deleting noncritical or less

critical constraints was adopted. For the example prob-

lems, the constraint deletion technique worked well be-

cause the number of active constraints at the optimum

design is quite small in comparison with the total

number of constraints, and most of the active constraints

remain active during the entire design process. Further-

more, first order Taylor series expansions with respect

to reciprocal design variables were used to provide

explicit approximate representations for stresses and

displacements. This high quality approximation was

very effective in reducing the number of actual analyses

needed to obtain an optimum design. Finally it should

be noted that care has been taken to avoid the genera-

tion of infeasible basis design vectors such as the

one shown in Fig. 7. This was achieved by imposing

additional limitations on the values of the multipliers

corresponding to violated constraints.

With regard to the results for the example problems,

one notable thing is the accuracy of the approximate

optimum designs. The obtained weights corresponding
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to the final designs obtained are very close to (less

than 1% above) the best previously reported results for

these example problems. It is also noted that these

designs were obtained using only two basis design vec-

tors in each case. The results reported here suggest

that basis design vectors generated by optimality

criteria and stress ratio methods may frequently span

a subspace such that the application of mathematical

programming methods to the reduced problem, cast in

terms of a few generalized design variables, provides

an efficient hybrid method for obtaining an excellent

upper bound approximation of the optimum design. The

trade off between the effort expended to refine the basis

vectors (i.e., converge the subproblems) and their qual-

ity, with respect to spanning a subspace containing a

good upper bound approximation of the optimum design,

is an open question which will require further study.

This trade off must be investigated thoroughly before

hybrid methods of structural optimization can become

efficient tools for the design of large practical struc-

tural systems subject to a wide range of behavioral con-

straint types. It should be emphasized that the signifi-

cance of the results reported here is that they establish

the feasibility of the hybrid method concept and they
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indicate the promise that these methods hold for achieving

high efficiency.

Based on the study presented here, the following

conclusions have been reached:

(1) The hybrid method appears to be one of the most

efficient methods especially for large scale struc-

tural problems.

(2) Basis design vectors for hybrid methods can be gen-

erated efficiently by the optimality criteria methods.

(3) The stress ratio method appears to be adequate for

generating the design basis vector containing infor-

mation relative to the stress constraints.

(4) In many cases the optimum designs obtained for each

subproblem form a reduced basis that spans a sub-

space containing a good upper bound approximation

of the optimum design.

(5) Taylor series expansion with respect to linked reci-

procal design variables can be used in the context

of optimality criteria and stress ratio methods and

they produce considerable improvement in efficiency

by reducing the number of actual analyses needed

to achieve convergence.

As a result of this study, it is suggested that the

following additional work may be of interest:
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(1) The method developed for buckling and natural fre-

quency constraints should be implemented and nu-

merical results should then be generated and examined.

(2) A method to prevent convergence to nonoptimal points

such as the'one shown in Fig. 8 should be sought.

(3) A trade off study employing various strategies that

combine optimality criteria methods, or stress

ratio methods, with the Taylor series expansion

technique for approximate analysis should be car-

ried out. The trade-off will be between the effort

expended to obtain the basis vectors and their qual-

ity, with respect to spanning a subspace containing

a good approximation of the optimum design.

and finally

(4) The method should be extended to other types of

behavior constraints as well as a broader class of

structures.
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APPENDIX A

FARKAS' LEMMA AND DERIVATION

OF EQUATION (3.17)

Farkas' Lemma Ref. 18 is given as follows:

Let {Po' l' P2''''Pr} be an arbitrary set of vectors.

There exists 8i > 0 such that
T

if and only if

a 0 (A.1)

for all y satisfying

-r1, 2

From the lemma, the following relation can easily

be derived by replacing Pi by (-P ), i = 1,2,...,r,

if and only if

for all 7 satisfying
(A.2)

there exists 3i > 0 such that
r
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A set of equations (3.16) can be rewritten in the following

matrix form

for all 6D satisfying

T- -.

SSD SDfo E Jmin

where (A. 3)

T = )

. and J. are unit vectors in which only the jth element

has the value of -1 and 1, respectively, and all the other

elements are zero.

Using the relation (A.2) and replacing Po by w,

y by SD, Pi by Vgk, Ij and Jj, Bi by ~, pj and nj,

it is proved that the following relation is mathematically
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equivalent to that given by (A.3),

-*--9

. + + rp . -,- 1* Zf* (A.4)
kact , -

where Xk, j and nj are nonnegative.

In order to include inactive constraints into the relation

(A.4), we introduce the null multipliers such that

Using the null multipliers, the relation (A.4) can be

rewritten as

r4C

1*Jm3M

From equation (A.5), we get

NC

Nc

ItMI

Noting that j. and ) are nonnegative, we get the follow-

ing relations

101



0 Joy f=0 4aY, fET,

where

This relation is just the same as that given by (3.17).
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APPENDIX B

MATHEMATICAL CONSIDERATION

ON THE HYBRID METHOD

Here some mathematical considerations for the hybrid

method (basis design vector method) are presented. As

shown in Chapter II, the structural optimization problem

considered in this paper is given in the following form

Minimize W = W(b)

subject to (B.1)

D :S 0 1,- 2,

where D represents an M dimensional design variable vector,

and gk(D) includes both behavior and size constraints and

K denotes the total number of constraints.

Let D , D2,...,D N , N < M, be an arbitrary set of

M dimensional vectors, and define a set of new design

variables 0. such that
J

D = . e i  (B.2)

Assume that we get the optimal solution of problem (B.1)

for , let it be *, then the following optimality criteria

must be satisfied

i , 2- (B.3)

where

103(B.4)
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From equation (B.2)

M

-
=  

(B.5)

where Dji denotes the ith element of Dj. From equations

(B.3) and (B.5)

M (K
I 1 0 - L (B.6)

If D* is the actual optimal solution of problem (B.1),

the term in the parenthesis should be zero for all i.

However, equation (B.5) does not guarantee it because

the number of equations N is less than the number of the

terms in the parentheses which is M. It follows that

the actual optimal solution does not necessarily exist

in the subspace defined by equation (B.2) for any choice

of Dj, j = 1,2,...,N. Therefore, the solution given by

equation (B.4) must be an approximation of the actual

optimal solution.

Next we will consider the case that D. is given

by the optimal solution of the jth subproblem which is

defined as follows

Minimize W = W(D)

subject to
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where gjk(D) represents the constraints which are to be

imposed only in the jth subproblem, and gok(D) denotes

the constraints to be imposed in every subproblem. Let

K. and K be the number of corresponding constraints,
3 o

respectively, and investigate the conditions under which

the method will give the actual optimal solution. From

the assumption, the following optimality criteria must

be satisfied for each j,
. Ka

i = 1,2,...,M (B.7)

If D* defined by equation (B.4) is the actual optimal

solution, then

-K. a D ) C

,9D4 ;DZ k=1 DD(B.8)

, 2,- M Ki + K-

If equation (B.8) can be expressed by the linear combina-

tion of equation (B.7), there exist Ak and Uk satisfying

equation (B.8), and consequently 6* gives the actual

optimal solution. Generally, this is possible only

when gk is a linear function of D for all k, and W is

either of the following

(1) linear function of D

(2) W = D [A]D + W
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where [A] is the MxM matrix and W is constant. Under

these conditions the hybrid method may give the actual

optimal solution. In other cases, it may depend on the

problem itself, and general conditions have not yet been

derived.
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APPENDIX C

OPTIMALITY CRITERIA FOR

GENERALIZED STIFFNESS CONSTRAINTS

Generally speaking, the total strain energy stored

in a structure represents an inverse measure of the

stiffness of the structure. Therefore, the stiffness

requirement can be set up by restricting the value

of total strain energy. This is called "generalized

stiffness constraint" [11], and it is usually given

by

- " K "- U" <= o (c.1)
where U* denotes the specified upper limit of total

strain energy.

Differentiating both sides of equation (C.1) with

respect to Ai, we get

?AN Z(A + - A; (C.2)

Substituting equations (3.39) and (3.43) into equation (C.2)

yields

A u (C.3)

Using the relation given by (3.36), we get

I - 6i A ] LA (C.4)
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From equation (3.17), we obtain the optimality criteria

for generalized stiffness constraints such that

- -- -for E (C.5)

Multiplying both sides of equations (C.5) by Dj, we

get the following standard form,

w i - U = o, (So i (C.6)

where

then U. denotes the total strain energy stored in the

jth group of elements.

For multiple constraints, the criteria can be gen-

eralized as

NC

W i  Xk U{ = o i T (C.7)

where

and Ukj represents Uj for the kth constraint.
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The redesign equation can be obtained in

similar to that used for displacement constraints, and it is

where (C.8)

i 

5

If size constraints are imposed, equation (3.20) must be

used together with equation (C.8).

The value of Ukj/W j can be estimated in the following

manner. For active constraints

MDV
- (C.9a)

HDY
- (C.9b)

where (Uk)s represents the total strain energy of a

whole structure at the sth iteration.

Let

=j Uk. U (c.10)

then equation (C.9a) is satisfied. Thus we will use the

following equation to estimate the value of Ukj/Wj
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uIi _ d (Uig
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APPENDIX D

LINEAR APPROXIMATION OF

STRESS AND DISPLACEMENT

It has been recognized that structural behaviors

such as stress, displacement and so on can be estimated

by using a first order Taylor series expansion, which

is given in the following form

)+ (D.)

where f(x) is an arbitrary differentiable function of

variable x = {xj}, and x O = {x jo is an arbitrary given

point. Applying equation (D.1) to displacement yields

k (D.2)

where x represents an appropriate design variable vector.

Equation (D.2) must be applicable to any displacement,

thus we get

It has also been found that the use of reciprocals

of the sizing type design variables is very effective

in increasing the accuracy of this estimation. There-

fore, x. is selected as
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V4i L, '(D.4)

From equation (D.4)

D (D.5)

Substituting equations (D.4) and (D.5) into equation (D.3)

yields

~ b d(D.6)

From equations (3.36), (3.39) and (3.43)

- - ( rKN3 (A (D.7)

Substituting equation (D.7) into (D.6), we get

a new design D can be estimated by using equation (D.8).

-k~ LAzDy (D.8)
j+l i*j

If we know and [K] for design 5', then displacement for

a new design D can be estimated by using equation (D.8).

In the displacement method of analysis, stress is

readily expressed as a function of displacements. There-

fore stress can also be estimated using equation (D.8).

For an axial force element, stress is given by

[ IAZ (D.9)

where [S] is a geometrically determined matrix. Sub-

stituting equation (D.8) into equation (D.9), we get
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]K(D.10)
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APPENDIX E

REDESIGN PROCEDURES BASED ON

OPTIMALITY CRITERIA PREVIOUSLY PRESENTED

Here a brief explanation of two representative re-

design procedures based on discretized optimality criteria

is presented. Among these two procedures, one was given

by Venkaya [11], and the other was given by Gellatly [9].

Venkaya has presented a redesign equation for gen-

eralized stiffness constraints under multiple load con-

ditions in Ref. [11], which is

1
- 4 A -) 4 (E.1)

where ai is the ith relative design variable, and A
(k)'

is a scaling parameter. u. is the total strain energy

of the ith element under the kth load condition for the

relative design, and T.' denotes the weight of the ith

element for the relative design. s represents the cycle

of iteration. The weighting parameter ck is given by

where W is the current total weight of the structure and

zk is the specified value for the kth constraint. p is

the number of constraints.

Equation (E.1) can be rewritten as
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k)
! A. " (E.3)

because

T --  Ac

where u(k) is the strain energy of the ith element

under the kth load condition, and Ti is the weight of

the element. Under design variable linking, equation

(E.3) can be modified by using the notation defined in

this paper as

where Ukj -:epresents the total strain energy of the jth

igroup elements, and Wj is the total weight of the group.

No redesign equation for generalized stiffness con-

!straints has been given by Gellatly. However, he has

presented a redesign procedure for a combination of

stress an- displacement constraints. The basic concept

of his method can be summarized as follows: Compute a

new value of each design variable for each constraint and

select the largest one for each design variable [9].

This concept was applied to the first example problem

in Chapter IV as Gellatly's redesign procedure.
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